Asked by A

r=8cos(theta)+5sin(theta), convert the polar equation into a rectangular equation and then complete the square and determine the center radius...?

Help?! I missed the section, and am not getting anywhere with the text...

Answers

Answered by Reiny
In your text, you should find a diagram similar to this one
http://en.wikipedia.org/wiki/File:Polar_to_cartesian.svg

If you label the endpoint of the rotating arm as either
(x,y) in rectangular and (r,Ø) in polar, then

x = rcosØ or cosØ = x/r
y = rsinØ or sinØ = y/r

also x^2 + y^2 = r^2, and tanØ = y/x

then in your equation r = 8(x/r) + 5(y/r)
multiply by r
r^2 = 8x + 5y
x^2 + y^2 = 8x + 5y
x^2 - 8x + y^2 - 5y = 0

This is the equation of a circle. I will assume you know how to complete the square and thus find the centre and radius.
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions