Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
A ball is thrown vertically upward with a velocities of 18 m/s. Two seconds later another ball is thrown upwards with a velocit...Asked by Seetharaman
A ball is thrown vertically upward with velocities of 18 m/s. Two seconds later another ball is thrown upwards with a velocity of 13.5 m/s. At what position above the ground will they meet?
Answers
Answered by
Elena
For the 1st ball, the time of the upward motion
v=v₀-gt
v=0
0=v₀-gt
t= v₀/g =18/9.8=1.83 s.
The height of the 1st ball
h= v₀t-gt²/2=18•1.83 - 9.8•(1.83)²/2= =16.53 m
The time of the 1st ball downward motion before the 2nd ball begins to move is
Δt=2 s -1.83 s = 0.17 s
The 1st ball during 0.17 s covered the distance
Δh=g(Δt)²/2 =9.8•0.17²/2 = 0.14 m.
Its downward velocity is
v₀₁ = gΔt=9.8•0.17 =1.67 m/s
Now, two balls begin to move:
the 1st ball moves downward with initial velocity v₀₁ =1.67 m/s,
the 2nd ball moves upward with initial velocity v₀₂=13.5 m/s.
The distance separated them is
h₀ = h- Δh = 16.53 – 0.14 = 16.39 m.
Before the meeting, the 1st ball covered h₁=v₀₁t+gt²/2,
and the 2nd ball covered the distance h₂=v₀₂t-gt²/2.
h₀ = h₁+h₂=v₀₁t+gt²/2 + v₀₂t-gt²/2=
=(v₀₁+ v₀₂)t
t= h₀/(v₀₁+ v₀₂)=16.39/(13.5+1.67) =
=1.08 s.
The position above the ground is
h₂=v₀₂t-gt²/2 =13.5•1.08 – 9.8•1.08²/2 =
= 14.58 -5.72 = 8.86 m
v=v₀-gt
v=0
0=v₀-gt
t= v₀/g =18/9.8=1.83 s.
The height of the 1st ball
h= v₀t-gt²/2=18•1.83 - 9.8•(1.83)²/2= =16.53 m
The time of the 1st ball downward motion before the 2nd ball begins to move is
Δt=2 s -1.83 s = 0.17 s
The 1st ball during 0.17 s covered the distance
Δh=g(Δt)²/2 =9.8•0.17²/2 = 0.14 m.
Its downward velocity is
v₀₁ = gΔt=9.8•0.17 =1.67 m/s
Now, two balls begin to move:
the 1st ball moves downward with initial velocity v₀₁ =1.67 m/s,
the 2nd ball moves upward with initial velocity v₀₂=13.5 m/s.
The distance separated them is
h₀ = h- Δh = 16.53 – 0.14 = 16.39 m.
Before the meeting, the 1st ball covered h₁=v₀₁t+gt²/2,
and the 2nd ball covered the distance h₂=v₀₂t-gt²/2.
h₀ = h₁+h₂=v₀₁t+gt²/2 + v₀₂t-gt²/2=
=(v₀₁+ v₀₂)t
t= h₀/(v₀₁+ v₀₂)=16.39/(13.5+1.67) =
=1.08 s.
The position above the ground is
h₂=v₀₂t-gt²/2 =13.5•1.08 – 9.8•1.08²/2 =
= 14.58 -5.72 = 8.86 m
Answered by
Seetharaman
A 1500 kg automobile is traveling up to 20 degree incline at a speed of 6 m/s. If the driver wishes to stop his car in a distance of 5m, determine the frictional force at pavement which must be supplied by rear wheels.
Answered by
Steve
you can just solve to see when the heights are equal:
18t-4.9t^2 = 13.5(t-2)-4.9(t-2)^2
t = 1.08
proceed from there as above
18t-4.9t^2 = 13.5(t-2)-4.9(t-2)^2
t = 1.08
proceed from there as above
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.