Asked by COFFEE
Solve the initial-value problem.
Am I using the wrong value for beta here, 2sqrt(2) or am I making a mistake somewhere else? Thanks.
y''+4y'+6y=0, y(0)=2, y'(0)=4
r^2+4r+6=0, r=(-4 +/- sqrt(16-4(1)(6))/2
r=-2 +/- sqrt(2)*i , alpha = -2, beta = 2(sqrt(2))
y=e^-2x*(c1*cos(sqrt(2))x+c2*sin(sqrt(2))x)
y(0)=1*(c1+0)=2, c1=2
y'=(-1/2)e^-2x*(c1*(sin(sqrt(2)))/sqrt(2)-c2*(cos(sqrt(2)))/sqrt(2))
y'(0)=(-1/2)(0-1/sqrt(2)*c2)=4
c2=2/sqrt(2)
y(x)=e^-2x*(2cos(sqrt(2))x+(2/sqrt(2))sin(sqrt(x))x)
I don't follow the y', recheck it. How did you get the 1/2 coefficient?
I got it...thanks.
Am I using the wrong value for beta here, 2sqrt(2) or am I making a mistake somewhere else? Thanks.
y''+4y'+6y=0, y(0)=2, y'(0)=4
r^2+4r+6=0, r=(-4 +/- sqrt(16-4(1)(6))/2
r=-2 +/- sqrt(2)*i , alpha = -2, beta = 2(sqrt(2))
y=e^-2x*(c1*cos(sqrt(2))x+c2*sin(sqrt(2))x)
y(0)=1*(c1+0)=2, c1=2
y'=(-1/2)e^-2x*(c1*(sin(sqrt(2)))/sqrt(2)-c2*(cos(sqrt(2)))/sqrt(2))
y'(0)=(-1/2)(0-1/sqrt(2)*c2)=4
c2=2/sqrt(2)
y(x)=e^-2x*(2cos(sqrt(2))x+(2/sqrt(2))sin(sqrt(x))x)
I don't follow the y', recheck it. How did you get the 1/2 coefficient?
I got it...thanks.
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.