Asked by Leasha
Find the extreme value(s) of the function f(x)=1/(1-x^2).
I tried, and for the first derivative I got -1/(2*sqrt((1-x^2)^3)). I then found critical values of the function to be -1 and 1.
However, the textbook says that the minimum value is 1 at f(0), and I have absolutely no idea where they came up with that answer... Help please!
I tried, and for the first derivative I got -1/(2*sqrt((1-x^2)^3)). I then found critical values of the function to be -1 and 1.
However, the textbook says that the minimum value is 1 at f(0), and I have absolutely no idea where they came up with that answer... Help please!
Answers
Answered by
David Q/R
I think there's posibly a piece of information missing in the question as you've stated it, which is that you're only supposed to be looking at the function between the values X = -1 and X = +1, because the function is discontinuous at both of those values, and also takes smaller values than f(X) = 1 outside that range: try X = -2 or +2, and you'll get f(X) = -1/3, which is certainly less than 1.
Secondly, I think you've got the differentiation wrong: I get df/dx = 2x/(1-x^2)^2, which if you set it to zero gives you just one real turning point at x = 0, for which f(x) = 1 as stated in the textbook.
Secondly, I think you've got the differentiation wrong: I get df/dx = 2x/(1-x^2)^2, which if you set it to zero gives you just one real turning point at x = 0, for which f(x) = 1 as stated in the textbook.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.