Asked by Elaine
I have to use integration by parts to integrate tan^-1 (1/x)dx. I'm not sure what to use as u or dv. We were taught to use uv-integral of (vdu) to do this.
Answers
Answered by
Anonymous
look for a u that does not get too messy on differentiation, and a v that can be integrated without too much troubls
here, it seems logical to use u = arctan(1/x) since we know we're going to get rid of the nasty arctan, and the chain rule will toss in a 1/x^2:
u = arctan(1/x)
du = 1/(1/x^2 + 1)* (-1/x^2) dx
= -1/(1+x^2) dx
dv = dx
v = x
uv-Int v*du = x*arctan(1/x) + Int(x/(1+x^2)) dx
Int v*du = 1/2 * ln(1+x^2)
So, the final answer is x*arctan(1/x) + 1/2 ln(1+x^2)
go ahead -- take the derivative and watch things cancel out!!
here, it seems logical to use u = arctan(1/x) since we know we're going to get rid of the nasty arctan, and the chain rule will toss in a 1/x^2:
u = arctan(1/x)
du = 1/(1/x^2 + 1)* (-1/x^2) dx
= -1/(1+x^2) dx
dv = dx
v = x
uv-Int v*du = x*arctan(1/x) + Int(x/(1+x^2)) dx
Int v*du = 1/2 * ln(1+x^2)
So, the final answer is x*arctan(1/x) + 1/2 ln(1+x^2)
go ahead -- take the derivative and watch things cancel out!!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.