Asked by jordan
Find a polynomial of lowest degree with only real coefficients and having the given zeros.
-2+i, -2-i, 3, -3
-2+i, -2-i, 3, -3
Answers
Answered by
Emily
Zeros are also "x = ..." statements, so x = -2 + i, x = -2 - i, etc...
Since you need REAL coefficients in the polynomial, change the x = -2 + i and x = -2 - i statements to "clean" polynomials, like this:
x = -2 + i
x + 2 = i (square each side to get rid of the i)
(x+2)^2 = i^2
x^2 + 4x + 4 = -1
==> x^2 + 4x + 5 = 0
x = -2 - i
(x+2)^2 = (-i)^2
I'm not going to go further with this because you get the same exact equation as the one before. So now when you multiply all the zeroes together, you get this:
0 = (x^2 + 4x + 5)(x-3)(x+3)
Multiply it out and you get:
x^4 + 4x^3 - 4x^2 - 36x - 45 = 0
Does this make sense?
Since you need REAL coefficients in the polynomial, change the x = -2 + i and x = -2 - i statements to "clean" polynomials, like this:
x = -2 + i
x + 2 = i (square each side to get rid of the i)
(x+2)^2 = i^2
x^2 + 4x + 4 = -1
==> x^2 + 4x + 5 = 0
x = -2 - i
(x+2)^2 = (-i)^2
I'm not going to go further with this because you get the same exact equation as the one before. So now when you multiply all the zeroes together, you get this:
0 = (x^2 + 4x + 5)(x-3)(x+3)
Multiply it out and you get:
x^4 + 4x^3 - 4x^2 - 36x - 45 = 0
Does this make sense?
Answered by
Christiaan
The polynomial would have to have 4 zeros, meaning it would have to be a polynomial of the 4th degree. The general form for a polynomial of the 4th degree with zeros a, b, c and d would be:
f*(x-a)*(x-b)*(x-c)*(x-d)
where f is a random real number (lets take this to be 1 in this case).
So, if we fill in the zeros you were given we get that:
(x-(-2+i))*(x-(-2-i))*(x-3)*(x+3) =
(x+2-i))*(x+2+i))*(x-3)*(x+3) =
When we multiply the first two factors and the last two, we get:
(x^2 + 2x + ix + 2x + 4 + 2i -ix - 2i +1) * (x^2 - 9) =
(x^2 + 4x + 5)*(x^2 - 9) =
(x^4 - 9x^2 + 4x^3 - 36x + 5x^2 -45) =
x^4 + 4x^3 - 4x^2 -36x - 45
this is a polynomial of the 4th degree which has the given values as its zeros
f*(x-a)*(x-b)*(x-c)*(x-d)
where f is a random real number (lets take this to be 1 in this case).
So, if we fill in the zeros you were given we get that:
(x-(-2+i))*(x-(-2-i))*(x-3)*(x+3) =
(x+2-i))*(x+2+i))*(x-3)*(x+3) =
When we multiply the first two factors and the last two, we get:
(x^2 + 2x + ix + 2x + 4 + 2i -ix - 2i +1) * (x^2 - 9) =
(x^2 + 4x + 5)*(x^2 - 9) =
(x^4 - 9x^2 + 4x^3 - 36x + 5x^2 -45) =
x^4 + 4x^3 - 4x^2 -36x - 45
this is a polynomial of the 4th degree which has the given values as its zeros
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.