Asked by Kaur
ABCD is a quadrilateral in which diagonals intersect at 90 degree.
Given, AB = 6cm, CD = 5cm and DA = 6cm.
Find side BC
Given, AB = 6cm, CD = 5cm and DA = 6cm.
Find side BC
Answers
Answered by
R_scott
two isosceles triangles ... same base
Answered by
mathhelper
Did you make your sketch?
Looks pretty straightforward to me.
Let the intersection of the diagonals be E
Look at triangle ABC, it is isosceles, so the base angles are equal.
CE is common, and we have 90° angles, so the two
triangles are congruent, making BE = ED
Now look at triangle BCD and the perpendicular CE.
Again you have a common side CE and BE = ED, so
triangles BCE and DCE are congruent ,
making BC = CD = 5
Looks pretty straightforward to me.
Let the intersection of the diagonals be E
Look at triangle ABC, it is isosceles, so the base angles are equal.
CE is common, and we have 90° angles, so the two
triangles are congruent, making BE = ED
Now look at triangle BCD and the perpendicular CE.
Again you have a common side CE and BE = ED, so
triangles BCE and DCE are congruent ,
making BC = CD = 5
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.