Question

13. Exercise: Convergence in probability:

a) Suppose that Xn is an exponential random variable with parameter lambda = n. Does the sequence {Xn} converge in probability?

b) Suppose that Xn is an exponential random variable with parameter lambda = 1/n. Does the sequence {Xn} converge in probability?


c) Suppose that the random variable in the sequence {Xn} are independent, and that the sequence converges to some number a, in probability.
Let {Yn} be another sequence of random variables that are dependent, but where each Yn has the same distribution (CDF) as Xn. Is it necessarily true that the sequence {Yn} converges to a in probability?

Answers

a) yes
b) no
c) yes
y
n
n
142n=47 find n

Related Questions