Asked by Mary
For the ellipse with equation 5x^2+64y^2+30x+128y-211=0, find the cooridinates of the center, foci, and vertices. Then, graph the equation.
my answer is:
coordinates of center: (-3,1)
foci:(-11,-1) and (4.7,-1)
vertices: (-11,-1) (5,-1)
(-3,-1+-square root of 5)
not sure how to graph, i know the center is (-3,1)
my answer is:
coordinates of center: (-3,1)
foci:(-11,-1) and (4.7,-1)
vertices: (-11,-1) (5,-1)
(-3,-1+-square root of 5)
not sure how to graph, i know the center is (-3,1)
Answers
Answered by
drwls
5(x^2 + 6x + 9) + 64(y^2 + 2x + 1) -45 -64 -211 = 0
5(x+3)^2 + 64 (y+1)^2 = 320
(x+3)^2/64 + (y+1)^2/5 = 0
Shouldn't the center be at (-3, -1) ?
The semimajor axis length (along the x direction) is a = sqrt64 = 8 and the semiminor axis length is b = sqrt5. The foci are at y = -1, and x = -3 +/- c, where
c^2 = a^2 - b^2 = 64 - 5 = 59
Add and subtract the semimajor axis lengths from the center coordinate to get the vertex locations.
I can't help you with the graphing part. You will need to locate the center on a graph, plot the vertex locations, and compute the coordinates of some intermediate points along the curve.
It is possible that I have made some math errors myself, so check my work.
5(x+3)^2 + 64 (y+1)^2 = 320
(x+3)^2/64 + (y+1)^2/5 = 0
Shouldn't the center be at (-3, -1) ?
The semimajor axis length (along the x direction) is a = sqrt64 = 8 and the semiminor axis length is b = sqrt5. The foci are at y = -1, and x = -3 +/- c, where
c^2 = a^2 - b^2 = 64 - 5 = 59
Add and subtract the semimajor axis lengths from the center coordinate to get the vertex locations.
I can't help you with the graphing part. You will need to locate the center on a graph, plot the vertex locations, and compute the coordinates of some intermediate points along the curve.
It is possible that I have made some math errors myself, so check my work.
Answered by
tyshiona
4x^2-9x+32x-144y-548=0
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.