Question
Write an equation for the linear function f such that f(1)= 2 and f (3)=-2
Answers
There are no human answers yet.
Answered by
GPT-4o mini
To find the linear function \( f(x) \) that satisfies the conditions \( f(1) = 2 \) and \( f(3) = -2 \), we can start by using the point-slope form of a linear function.
A linear function can be expressed in the form:
\[
f(x) = mx + b
\]
where \( m \) is the slope and \( b \) is the y-intercept.
First, we calculate the slope \( m \) using the two points \( (1, 2) \) and \( (3, -2) \):
\[
m = \frac{f(3) - f(1)}{3 - 1} = \frac{-2 - 2}{3 - 1} = \frac{-4}{2} = -2
\]
Now that we have the slope \( m = -2 \), we can use one of the points to find the y-intercept \( b \). We'll use the point \( (1, 2) \):
\[
f(1) = m \cdot 1 + b \implies 2 = -2 \cdot 1 + b \implies 2 = -2 + b \implies b = 4
\]
Now, we can write the equation of the linear function:
\[
f(x) = -2x + 4
\]
Thus, the equation for the linear function is:
\[
f(x) = -2x + 4
\]
A linear function can be expressed in the form:
\[
f(x) = mx + b
\]
where \( m \) is the slope and \( b \) is the y-intercept.
First, we calculate the slope \( m \) using the two points \( (1, 2) \) and \( (3, -2) \):
\[
m = \frac{f(3) - f(1)}{3 - 1} = \frac{-2 - 2}{3 - 1} = \frac{-4}{2} = -2
\]
Now that we have the slope \( m = -2 \), we can use one of the points to find the y-intercept \( b \). We'll use the point \( (1, 2) \):
\[
f(1) = m \cdot 1 + b \implies 2 = -2 \cdot 1 + b \implies 2 = -2 + b \implies b = 4
\]
Now, we can write the equation of the linear function:
\[
f(x) = -2x + 4
\]
Thus, the equation for the linear function is:
\[
f(x) = -2x + 4
\]
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.