Tomaz draws a circle and dilates it on a photocopier using a scale factor of 3. if the original circle has a radius of 3cm, what is the area of the dilated circle? round your answer to the nearest tenth of a square centimeter.

1 answer

To find the area of the dilated circle, we first need to determine the radius of the dilated circle. The original radius of the circle is 3 cm, and since the photocopier dilates it with a scale factor of 3, we can calculate the new radius as follows:

\[ \text{New radius} = \text{Original radius} \times \text{Scale factor} = 3 , \text{cm} \times 3 = 9 , \text{cm} \]

Next, we use the formula for the area of a circle, which is given by:

\[ \text{Area} = \pi r^2 \]

Substituting the new radius into the formula:

\[ \text{Area} = \pi (9 , \text{cm})^2 = \pi (81 , \text{cm}^2) = 81\pi , \text{cm}^2 \]

Now, we can approximate the value of \(\pi\) as 3.14. Therefore:

\[ \text{Area} \approx 81 \times 3.14 = 254.34 , \text{cm}^2 \]

Finally, rounding this value to the nearest tenth gives us:

\[ \text{Area} \approx 254.3 , \text{cm}^2 \]

Thus, the area of the dilated circle is approximately 254.3 square centimeters.

Similar Questions
    1. answers icon 1 answer
  1. Use the image to answer the question1 in. 3.5 in. 5 in. 0.7 in. Kamla draws the parallelogram on the left and then uses a scale
    1. answers icon 1 answer
  2. 1 in.3.5 in. 5 in. 0.7 in. Kamla draws the parallelogram on the left and then uses a scale factor to create the parallelogram on
    1. answers icon 3 answers
  3. 1 in.3.5 in. 0.7 in. 5 in. Kamla draws the parallelogram on the left and then uses a scale factor to create the parallelogram on
    1. answers icon 1 answer
more similar questions