Asked by Meg
The foot of a 30-foot ladder is being pulled away from a vertical wall at a rate of 1 foot per minute. When the top of the ladder is 6 feet from the ground, at what rate is the top of the ladder moving down the wall?
Answers
Answered by
Reiny
Let the foot of the ladder be x ft from the wall, and let the top of the ladder by y ft above the ground
x^2 + y^2 = 30^2
2x dx/dt + 2y dy/dt = 0
x dx/dt + y dy/dt = 0
when y = 6
x^2 + 36 = 900
x = √864
given: dx/dt = 1 , x = √864 , y = 6
√864(1) + 6dy/dt = 0
dy/dt = -√864/6 ft/min or appr. -4.9 ft/min
(the negative sign shows that y is decreasing or the ladder is moving down the wall)
x^2 + y^2 = 30^2
2x dx/dt + 2y dy/dt = 0
x dx/dt + y dy/dt = 0
when y = 6
x^2 + 36 = 900
x = √864
given: dx/dt = 1 , x = √864 , y = 6
√864(1) + 6dy/dt = 0
dy/dt = -√864/6 ft/min or appr. -4.9 ft/min
(the negative sign shows that y is decreasing or the ladder is moving down the wall)
Answered by
Meg
Reini - How did you ended up getting x dx/dt + y dy/dt=0?
my professor said something with
a^2 + b^2 = c^2
then differentiate it so 2a(da/dt) + 2b(db/dt) = 2c(dc/dt)
so a^2+b^2=c^2
a^2 + 6^2 = 30^2
so a=sqrt(864)
then I differentiate
let da/dt = 1
b = 6
c=30
2a(da/dt)+2b(db/dt)=2c(dc/dt)
2sqrt(864)(1)+2(6)(db/dt)=2(30)(0)
=24sqrt(6)+12db/dt = 0
but how do i sold for db/dt?
is this way correct?
thanks
my professor said something with
a^2 + b^2 = c^2
then differentiate it so 2a(da/dt) + 2b(db/dt) = 2c(dc/dt)
so a^2+b^2=c^2
a^2 + 6^2 = 30^2
so a=sqrt(864)
then I differentiate
let da/dt = 1
b = 6
c=30
2a(da/dt)+2b(db/dt)=2c(dc/dt)
2sqrt(864)(1)+2(6)(db/dt)=2(30)(0)
=24sqrt(6)+12db/dt = 0
but how do i sold for db/dt?
is this way correct?
thanks
Answered by
Reiny
that is exactly what I did, except I used x and y instead of a and b
remember that your c is a constant, so its derivative is zero (I used the actual 30^2)
I had defined x as the distance along the ground, and we were told the base of the ladder moved out"at a rate of 1 foot per minute"
this is the same as saying dx/dt = 1
from your
24sqrt(6)+12db/dt = 0
12db/dt = -24√6
db/dt = -24√6/12 = -4.9 , the same answer as I had
so yes, you are correct
remember that your c is a constant, so its derivative is zero (I used the actual 30^2)
I had defined x as the distance along the ground, and we were told the base of the ladder moved out"at a rate of 1 foot per minute"
this is the same as saying dx/dt = 1
from your
24sqrt(6)+12db/dt = 0
12db/dt = -24√6
db/dt = -24√6/12 = -4.9 , the same answer as I had
so yes, you are correct
Answered by
Megan
Thank you very much for your help :)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.