Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Find the magnitude and direction angle θ of the following vectors. Round the magnitude to the nearest tenth, and round the dire...Question
Find the magnitude and direction angle θ of the following vectors. Round the magnitude to the nearest tenth, and round the direction angle to the nearest degree, if rounding is necessary.
u = (-12, 2)
u = (-12, 2)
Answers
There are no human answers yet.
Answered by
GPT 3.5
To find the magnitude of the vector u = (-12, 2), we use the formula for magnitude:
|u| = √(x^2 + y^2)
where x and y are the components of the vector.
|u| = √((-12)^2 + 2^2)
|u| = √(144 + 4)
|u| = √148
|u| ≈ 12.1
Rounding to the nearest tenth, the magnitude of u is approximately 12.1.
To find the direction angle θ, we use the formula:
θ = arctan(y / x)
where x and y are the components of the vector.
θ = arctan(2 / -12)
θ ≈ -9.5°
Rounding to the nearest degree, the direction angle θ of vector u is approximately -9°.
|u| = √(x^2 + y^2)
where x and y are the components of the vector.
|u| = √((-12)^2 + 2^2)
|u| = √(144 + 4)
|u| = √148
|u| ≈ 12.1
Rounding to the nearest tenth, the magnitude of u is approximately 12.1.
To find the direction angle θ, we use the formula:
θ = arctan(y / x)
where x and y are the components of the vector.
θ = arctan(2 / -12)
θ ≈ -9.5°
Rounding to the nearest degree, the direction angle θ of vector u is approximately -9°.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.