Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
A charge of -3.00 µC is fixed at the center of a compass. Two additional charges are fixed on the circle of the compass (radius...Asked by Mary
A charge of -3.00 µC is fixed at the center of a compass. Two additional charges are fixed on the circle of the compass (radius = 0.135 m). The charges on the circle are -3.20 µC at the position due north and +5.00 µC at the position due east. What is the magnitude and direction of the net electrostatic force acting on the charge at the center? Specify the direction relative to due east (0°).
Magnitude
_________N
Direction
_________°
For Further Reading
Physics - Bobpursley, Thursday, August 30, 2007 at 1:52am
assume the charges don't move. Work this as a vector problem. Find the force S due to the center charge and the N charge, and the Force E due to the center charge and the E charge. Add those as vectors
Magnitude
_________N
Direction
_________°
For Further Reading
Physics - Bobpursley, Thursday, August 30, 2007 at 1:52am
assume the charges don't move. Work this as a vector problem. Find the force S due to the center charge and the N charge, and the Force E due to the center charge and the E charge. Add those as vectors
Answers
Answered by
Ashley H
Use Coulombs' Law:
F=k(q1)(q2)/(r)^2
***(q1 and q2 are the absolute values--so the sign is positive even if the given value is negative)
***K is the constant: 8.99 x 10^9N*m^2/C^2
***r is the radius
The question wants you to find the net force acting on the center particle--so Fnet= Force on center by the particle due east + the force on the center by the particle due north
Use Coulomb's Law to find the individual forces that the particles exert: (change uC to C for the equation)
Force on center by East= 8.99x10^9 (3.0x10^-6)(5.0x10^-6)/(0.135)^2
***There is no Y component for this force
*** The center charge is - and the east charge is + so the particles attract and the east charge has a force in the negative direction
Force on center by North: 8.99x10^9 (3.0x10^-6)(3.20x10^-6)/ (0.135)^2
***There is no X component for this force
***Like charges repel, so the force will be away from the center in the positive y direction.
Now, use A^2+B^2=C^2 to solve for C (this will be the vector sum of the forces) A=Force on center by North and B=Force on center by East (The answers you obtain from the two previous equations)
C will be your answer. (I don't have a calculator)
Direction: tan^-1 (opposite or y vector/adjacent or x vector)
F=k(q1)(q2)/(r)^2
***(q1 and q2 are the absolute values--so the sign is positive even if the given value is negative)
***K is the constant: 8.99 x 10^9N*m^2/C^2
***r is the radius
The question wants you to find the net force acting on the center particle--so Fnet= Force on center by the particle due east + the force on the center by the particle due north
Use Coulomb's Law to find the individual forces that the particles exert: (change uC to C for the equation)
Force on center by East= 8.99x10^9 (3.0x10^-6)(5.0x10^-6)/(0.135)^2
***There is no Y component for this force
*** The center charge is - and the east charge is + so the particles attract and the east charge has a force in the negative direction
Force on center by North: 8.99x10^9 (3.0x10^-6)(3.20x10^-6)/ (0.135)^2
***There is no X component for this force
***Like charges repel, so the force will be away from the center in the positive y direction.
Now, use A^2+B^2=C^2 to solve for C (this will be the vector sum of the forces) A=Force on center by North and B=Force on center by East (The answers you obtain from the two previous equations)
C will be your answer. (I don't have a calculator)
Direction: tan^-1 (opposite or y vector/adjacent or x vector)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.