Asked by GT
For every positive integer n, consider all monic polynomials f(x) with integer coefficients, such that for some real number a
x(f(x+a)−f(x))=nf(x)
Find the largest possible number of such polynomials f(x) for a fixed n<1000.
Details and assumptions
A polynomial is monic if its leading coefficient is 1. For example, the polynomial x3+3x−5 is monic but the polynomial −x4+2x3−6 is not.
x(f(x+a)−f(x))=nf(x)
Find the largest possible number of such polynomials f(x) for a fixed n<1000.
Details and assumptions
A polynomial is monic if its leading coefficient is 1. For example, the polynomial x3+3x−5 is monic but the polynomial −x4+2x3−6 is not.
Answers
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.