Asked by Cathy
Find the area of a cyclic quadrilateral whose 2 sides measure 4 & 5 units, & whose diagonal coincides with a diameter of the circle. Suppose the radius of the circumscribing circle is 2 sq.root of 3 units.
Please include solution. Thanks.
Please include solution. Thanks.
Answers
Answered by
Reiny
In a cyclic quadrilateral, the diagonal would be the hypotenuse of two right-angled triangles.
Clearly if the hypotenuse , in this case the diagonal, is 4√3, then the two given sides of 4 and 5 cannot be sides of the same triangle.
I made the following sketch
Quad ABCD in a circle, with BD as the diagonal of 4√3
AB = 5 and BC = 4
in triangle ABD
AD^2 + 5^2 = (4√3)^2
AD^2 = 48-25 = 23
AD = √23
It should also be obvious that the other triangle BCD is congruent to the first one.
So total area = 2 (1/2)(5)(√23 = 5√23
Clearly if the hypotenuse , in this case the diagonal, is 4√3, then the two given sides of 4 and 5 cannot be sides of the same triangle.
I made the following sketch
Quad ABCD in a circle, with BD as the diagonal of 4√3
AB = 5 and BC = 4
in triangle ABD
AD^2 + 5^2 = (4√3)^2
AD^2 = 48-25 = 23
AD = √23
It should also be obvious that the other triangle BCD is congruent to the first one.
So total area = 2 (1/2)(5)(√23 = 5√23
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.