Asked by Sarah
Consider a 58.4 g sample of H2O(g) at 125°C. What phase or phases are present when -162 kJ of energy is removed from this sample? Specific heat capacities: ice, 2.1 J g-1 °C-1; liquid, 4.2 J g-1 °C-1; steam, 2.0 J g-1 °C-1, ΔHvap = 40.7 kJ/mol, ΔHfus = 6.02 kJ/mol. (Select all that apply.)
gas
liquid
solid
q for H2O(g, 125°C) H2O(g, 100°C)
kJ
q for H2O(g, 100°C) H2O(l, 100°C)
kJ
q for H2O(l, 100°C) H2O(l, 0°C)
kJ
q for H2O(l, 0°C) H2O(s, 0°C)
kJ
gas
liquid
solid
q for H2O(g, 125°C) H2O(g, 100°C)
kJ
q for H2O(g, 100°C) H2O(l, 100°C)
kJ
q for H2O(l, 100°C) H2O(l, 0°C)
kJ
q for H2O(l, 0°C) H2O(s, 0°C)
kJ
Answers
Answered by
DrBob222
Is that stuff at the bottom of your post a hint on how to work the problem. Just follow that. For example, how much energy is released when steam is moved from 125 C to 100 C?
That will be mass steam x specific heat steam x (25) = q1.
58.4 g x 2.0 J/g*C x 25 = 2,920 J.
You had 162,000 J to start; now you have 162,000-2920 = 158,080 J to go.
q2 to condense steam at 100 C to liquid water at 100 C.
mass steam x heat vap = 58.4 x (1 mol/18g) x 40.7 kJ/mol = 132.049 kJ or 132,049 J.
158,080-132,049 = 26,031 to go.
I'll leave it for you here.
That will be mass steam x specific heat steam x (25) = q1.
58.4 g x 2.0 J/g*C x 25 = 2,920 J.
You had 162,000 J to start; now you have 162,000-2920 = 158,080 J to go.
q2 to condense steam at 100 C to liquid water at 100 C.
mass steam x heat vap = 58.4 x (1 mol/18g) x 40.7 kJ/mol = 132.049 kJ or 132,049 J.
158,080-132,049 = 26,031 to go.
I'll leave it for you here.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.