Asked by ashlee
The string on a violin has a fundamental frequency of 120.0 Hz. The length of the vibrating portion is 36 cm and has a mass of 0.58 g. Under what tension (in newtons) must the string be placed?
Answers
Answered by
Elena
The fundamental frequency is: f1 = 120Hz
At the fundamental, the string has two nodes at the end, and one anti-node in the middle, so therefore the vibrating length of the string (0.36 m) is equal to λ/2 , so λ= 0.72 m.
v = λ•f = 0.72• 120 = 86.4 m/s.
Now we will apply the wave speed in a string relationship, which is:
v = sqrt(T/mₒ),
where mₒ = m/L= 0.58•10^-3/0.36 = 1.6•10^-3 kg/m is mass/length for the cord,
and T is the tension in the cord.
Therefore, T = mₒ•v² =1.6•10^-3 •(86.4)² ≈ 12 N.
At the fundamental, the string has two nodes at the end, and one anti-node in the middle, so therefore the vibrating length of the string (0.36 m) is equal to λ/2 , so λ= 0.72 m.
v = λ•f = 0.72• 120 = 86.4 m/s.
Now we will apply the wave speed in a string relationship, which is:
v = sqrt(T/mₒ),
where mₒ = m/L= 0.58•10^-3/0.36 = 1.6•10^-3 kg/m is mass/length for the cord,
and T is the tension in the cord.
Therefore, T = mₒ•v² =1.6•10^-3 •(86.4)² ≈ 12 N.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.