Question
A wooden cube with a specific gravity of 0.90 and side length 0.120 m is placed into a
bucket of water and floats upright with its sides in a horizontal or vertical orientation.
What is the mass of the cube, what is the buoyancy force acting on the cube and how
much of the cube projects above the surface?
bucket of water and floats upright with its sides in a horizontal or vertical orientation.
What is the mass of the cube, what is the buoyancy force acting on the cube and how
much of the cube projects above the surface?
Answers
Let the length above the surface of the water is «x”,
a =0.120 m,
ρ1/ρ2 = 0.9. Since the density of water is ρ2 = 1000 kg/m³,
the density of wood is ρ1 = 900 kg/m³.
m•g = F(buoyancy force),
ρ1•V•g = ρ2•V1 •g
ρ1•a³•g = ρ2•a²•(a-x)•g,
ρ1/ ρ2 = (a-x)/a =0.9.
x = a – 0.9•a = 0.1•a =0.012 m.
The mass of the cube is
m = ρ1•a³ = 900•(0.12)³=1.56 kg.
The buoyancy force is
F = ρ2•a²•(a-x)•g = 1000•(0.12)² •(0.12 -0.012) •9.8 = 15.24 N.
a =0.120 m,
ρ1/ρ2 = 0.9. Since the density of water is ρ2 = 1000 kg/m³,
the density of wood is ρ1 = 900 kg/m³.
m•g = F(buoyancy force),
ρ1•V•g = ρ2•V1 •g
ρ1•a³•g = ρ2•a²•(a-x)•g,
ρ1/ ρ2 = (a-x)/a =0.9.
x = a – 0.9•a = 0.1•a =0.012 m.
The mass of the cube is
m = ρ1•a³ = 900•(0.12)³=1.56 kg.
The buoyancy force is
F = ρ2•a²•(a-x)•g = 1000•(0.12)² •(0.12 -0.012) •9.8 = 15.24 N.
Related Questions
A wooden block that is a rectangular prism is 12 inches long. Melinda cuts the wooden block along it...
Consider a cube with a volume of 64 cm3 . What can be concluded about the cube? Select the two that...
Question Consider a cube with a volume of%C2%A0 64%C2%A0cm3 . What can be concluded about the cube?...