Asked by Anonymous
Suppose that y = f(x) = x^2 - 4x + 4.
Then on any interval where the inverse function y = f-1(x) exists, thederivative of y = f-1(x) with respect to x is:
(Hint: x^2 - 4x + 4 can be factored and rewritten as "something" squared.)
Work thus far:
Okay, so I know that I can factor y to equal y = (x - 2)^2
Next, I can solve for the inverse function:
x = (y - 2)^2
sqrt(x) = y - 2
y = sqrt(x) + 2
Then, I can find the derivative:
y' = (1/2)x^(-1/2)
Now, my concern is that the question also hints to an implicit solution to this problem. Working out the problem implicitly, I get:
x = y^2 - 4x + 4
1 = 2y(dy/dx) - 4(dy/dx)
dy/dx = 1 / (2y - 4) where x and y satisfy the equation y = x^2 - 4x + 4.
Would this answer be correct, as well? Or should it be "where x and y satisfy the equation x = y^2 - 4y +4"?
Then on any interval where the inverse function y = f-1(x) exists, thederivative of y = f-1(x) with respect to x is:
(Hint: x^2 - 4x + 4 can be factored and rewritten as "something" squared.)
Work thus far:
Okay, so I know that I can factor y to equal y = (x - 2)^2
Next, I can solve for the inverse function:
x = (y - 2)^2
sqrt(x) = y - 2
y = sqrt(x) + 2
Then, I can find the derivative:
y' = (1/2)x^(-1/2)
Now, my concern is that the question also hints to an implicit solution to this problem. Working out the problem implicitly, I get:
x = y^2 - 4x + 4
1 = 2y(dy/dx) - 4(dy/dx)
dy/dx = 1 / (2y - 4) where x and y satisfy the equation y = x^2 - 4x + 4.
Would this answer be correct, as well? Or should it be "where x and y satisfy the equation x = y^2 - 4y +4"?
Answers
Answered by
Reiny
from y = f(x) = x^2 - 4x + 4
forming the inverse consists of interchanging the x and y variables, so the inverse is
x = y^2 - 4y + 4
(you had -4x instead of -4y, but apparently worked it as -4y )
so 1 = 2y dy/dx - 4dy/dx
dy/dx(2y-4) = 1
dy/dx of the inverse is 1/(2y-4)
but your restriction would be y ≠ 2
forming the inverse consists of interchanging the x and y variables, so the inverse is
x = y^2 - 4y + 4
(you had -4x instead of -4y, but apparently worked it as -4y )
so 1 = 2y dy/dx - 4dy/dx
dy/dx(2y-4) = 1
dy/dx of the inverse is 1/(2y-4)
but your restriction would be y ≠ 2
Answered by
Ashley
^thats wrong. I got it wrong. sorry.
Answered by
Hi
The answer is 1/2x^-1/2
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.