Asked by Mooch
Suppose f(x) = sin(pi cos(x)). On any interval where the inverse function y = f^-1(x) exists, the derivative of f^-1(x) with respect to x is:
I've come as far as y = arccos ((arcsin(x))/pi), but I am not certain this is right.
I've come as far as y = arccos ((arcsin(x))/pi), but I am not certain this is right.
Answers
Answered by
Steve
your expression for y is right. so,
Let u = 1/pi arcsinx
(arccos u)' = -1/sqrt(1-u^2) u'
= -1/sqrt(1-u^2) * 1/pi * 1/sqrt(1-x^2)
= - 1/sqrt(1- 1/pi^2 (arcsinx)^2) * 1/pi * 1/sqrt(1-x^2)
= - 1/[sqrt(pi^2 - (arcsinx)^2)*sqrt(1-x^2)]
yummm! gotta love it!
Let u = 1/pi arcsinx
(arccos u)' = -1/sqrt(1-u^2) u'
= -1/sqrt(1-u^2) * 1/pi * 1/sqrt(1-x^2)
= - 1/sqrt(1- 1/pi^2 (arcsinx)^2) * 1/pi * 1/sqrt(1-x^2)
= - 1/[sqrt(pi^2 - (arcsinx)^2)*sqrt(1-x^2)]
yummm! gotta love it!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.