Asked by ash
a class consists of 14 men and 16 women. A group of 5 is randomly chosen
a) the probability of this group containing at least 2 women and at least 2 men?
b) probability the group contains the same gender.
a) the probability of this group containing at least 2 women and at least 2 men?
b) probability the group contains the same gender.
Answers
Answered by
MathMate
Total number of ways, N(all)
=30 choose 5
=C(30,5)
=30!/(5!(30-5)!)
A.
2 women+3 men
=16 choose 2 * 14 choose 3
=C(16,2)*C(14,3)
3 women+2 men
=16 choose 3 * 14 choose 2
=C(16,3)*C(14,2)
Number of ways to have at least two women and two men:
N1=C(16,2)*C(14,3)+C(16,3)*C(14,2)
Probability = N1/N(all)
B.
Number of ways for all men
=14 choose 5
=C(14,5)
Number of ways for all women
=16 choose 5
=C(16,5)
Number of ways for one gender
N2=C(14,5)+C(16,5)
Probability
=N2/N(all)
=30 choose 5
=C(30,5)
=30!/(5!(30-5)!)
A.
2 women+3 men
=16 choose 2 * 14 choose 3
=C(16,2)*C(14,3)
3 women+2 men
=16 choose 3 * 14 choose 2
=C(16,3)*C(14,2)
Number of ways to have at least two women and two men:
N1=C(16,2)*C(14,3)+C(16,3)*C(14,2)
Probability = N1/N(all)
B.
Number of ways for all men
=14 choose 5
=C(14,5)
Number of ways for all women
=16 choose 5
=C(16,5)
Number of ways for one gender
N2=C(14,5)+C(16,5)
Probability
=N2/N(all)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.