Asked by Em
Find the work done by a force F of 30 pounds acting in the direction (2,3) in moving an object 3 feet from (0,0) to the point in the first quadrant along the line y = (1/2)x.
The answer is 85.38 foot-pounds.
I just need to figure out how to get the answer.
The answer is 85.38 foot-pounds.
I just need to figure out how to get the answer.
Answers
Answered by
Damon
Find the angle of the Force F
cos T = 2/sqrt13 = .555
T = 56.3 deg above x axis
or
tan T = 2/3
so T = 56.3
Find the direction of motion from slope of line
tan slope = 1/2
slope angle = 26.6 deg
angle between force and motion = 56.3-26.6 = 29.7 degrees
so
component of force in direction of motion = 30 cos 29.7
= 26.06 pounds
26.06*3 = 78.2 ft lbs
beats me how to get 85.38
It would be much closer if the force vector were direction(3,2)
cos T = 2/sqrt13 = .555
T = 56.3 deg above x axis
or
tan T = 2/3
so T = 56.3
Find the direction of motion from slope of line
tan slope = 1/2
slope angle = 26.6 deg
angle between force and motion = 56.3-26.6 = 29.7 degrees
so
component of force in direction of motion = 30 cos 29.7
= 26.06 pounds
26.06*3 = 78.2 ft lbs
beats me how to get 85.38
It would be much closer if the force vector were direction(3,2)
Answered by
Megha
the vector is actually <2,2>
and the line angle is 64.3
and the line angle is 64.3
Answered by
Oscar
the vector is indeed <2,2>, but the line angle (angle formed by y=1/2x and x-axis) is as Damon posted, 26.6 degree. As for why it isn't 64.3 degree is because slope is change in y over the change in x, thus this means horizontal change is 2 and vertical change is 1. When finding the line angle, simply use arc tan(opp/adj) or in this case arc tan(1/2) which will result in 26.6 degree.
As for the answer, its actually 95.36 ft lb if the vector is <2,2>
As for the answer, its actually 95.36 ft lb if the vector is <2,2>
Answered by
Katelyn
F1 -> 30 lbs, direction <2, 2>
magnitude of <2, 2> = 2sqrt(2)
Find unit vector of F1 (divide original components by magnitude)
-> <30/sqrt(2), 30/sqrt(2)>
F2 -> 3 feet, direction y = 1/2x
3 = sqrt(x^2 + y^2)
y = 1/2x
3 = sqrt(x^2 + (1/2x)^2)
9 = 5/4* x^2
x^2 = 36/5
x = 6/sqrt(5)
y = 2/sqrt(5)
F1 = <30/sqrt(2), 30/sqrt(2)>
F2 = <6/sqrt(5), 3/sqrt(5)>
Find dot product of F1 and F2
(30/sqrt(2))*(6/sqrt(5))+(30/sqrt(2))*(3/sqrt(5)) = 85.38
Answer in the back of the book is 85.38
magnitude of <2, 2> = 2sqrt(2)
Find unit vector of F1 (divide original components by magnitude)
-> <30/sqrt(2), 30/sqrt(2)>
F2 -> 3 feet, direction y = 1/2x
3 = sqrt(x^2 + y^2)
y = 1/2x
3 = sqrt(x^2 + (1/2x)^2)
9 = 5/4* x^2
x^2 = 36/5
x = 6/sqrt(5)
y = 2/sqrt(5)
F1 = <30/sqrt(2), 30/sqrt(2)>
F2 = <6/sqrt(5), 3/sqrt(5)>
Find dot product of F1 and F2
(30/sqrt(2))*(6/sqrt(5))+(30/sqrt(2))*(3/sqrt(5)) = 85.38
Answer in the back of the book is 85.38
Answered by
Suman
First step : Using distance formula, find the point lying on the line y= 1/2(x) with given distance = 3 ft. Find distance vector.
Second step : Find Force vector in the direction of <2,3>
Third step : use formula W= Force * distance, get the work done in ft pound.
Second step : Find Force vector in the direction of <2,3>
Third step : use formula W= Force * distance, get the work done in ft pound.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.