Asked by Anon
I want to start by saying thank you . You have no idea how much u have helped me understand logarithms, even better then the books i have (it poorly explains the subject of trigonometry let alone logarithms and antilog). Your last explanation was very clear and i even understood Law of tangent a little better.
my question was:
Use logarithms and the law of tangents to solve the triangle ABC, given that a=21.46 ft, b=46.28 ft, and C=32°28'30".
give check
You helped me find angle A and B by using logarithms.
A=80 deg 26' 36"
B=67 deg 04' 55"
C=32 deg 28' 30"
a= 21.46
b= 46.28
and I used law of sine to find c.
this is my answer and i would appreciate if you correct me if I'm wrong.
sinA/a = sinC/c
sin 80.443 /21.46 = sin 32.475/c
21.46 (sin 32.475)/(sin 80.443)c
c= 11.68
okay now it says to give check.
okay i honestly don't know how or if the law of sin already covers the check part. I'd like your advice.
and thank you again . I honestly love it when i understand something i thought was so confusingly impossible to understand before.
my question was:
Use logarithms and the law of tangents to solve the triangle ABC, given that a=21.46 ft, b=46.28 ft, and C=32°28'30".
give check
You helped me find angle A and B by using logarithms.
A=80 deg 26' 36"
B=67 deg 04' 55"
C=32 deg 28' 30"
a= 21.46
b= 46.28
and I used law of sine to find c.
this is my answer and i would appreciate if you correct me if I'm wrong.
sinA/a = sinC/c
sin 80.443 /21.46 = sin 32.475/c
21.46 (sin 32.475)/(sin 80.443)c
c= 11.68
okay now it says to give check.
okay i honestly don't know how or if the law of sin already covers the check part. I'd like your advice.
and thank you again . I honestly love it when i understand something i thought was so confusingly impossible to understand before.
Answers
Answered by
drwls
You can check your value of c by using the Law of Cosines, with the original calyues of a, b and C.
c^2 = a^2 + b^2 -2ab cos C
c^2 = 460.32 +2141.84 -1986.34*0.8436
c = 30.44
That is not what you came up with. There appears to be something wrong with your initial angles. The law of sines does not agree with your angles A and B. If A > B, than you should have a > b
Perhaps Mathmate can explain the origin of the problem.
c^2 = a^2 + b^2 -2ab cos C
c^2 = 460.32 +2141.84 -1986.34*0.8436
c = 30.44
That is not what you came up with. There appears to be something wrong with your initial angles. The law of sines does not agree with your angles A and B. If A > B, than you should have a > b
Perhaps Mathmate can explain the origin of the problem.
Answered by
MathMate
I have looked at the question, and confirm that there was an error in the previous calculations using the law of tangents. Following are results using the sine rule:
Given:
a = 21.46, b = 46.28, C = 32-28-30
The cosine rule gives:
c = sqrt(a^2+b^2-2*a*b*cos(C))=30.440833
The sine rule gives
A=22-14-32, and
B=125-16-58
If you draw the triangle, with C=32°, a=21.46 and b=46.28, you will see a skew triangle which shows obviously that B>90°.
So sin(A) has to be interpreted as 180 - arcsin() of the acute angle, which gives 125-16-58 (instead of 54-43-02 straight from the calculator).
I have not completed looking into the source of the error of my previous calculations. It may have to do with the interpretation of the atan() values. I will get back to you when it is done.
I apologize for the inconvenience.
Given:
a = 21.46, b = 46.28, C = 32-28-30
The cosine rule gives:
c = sqrt(a^2+b^2-2*a*b*cos(C))=30.440833
The sine rule gives
A=22-14-32, and
B=125-16-58
If you draw the triangle, with C=32°, a=21.46 and b=46.28, you will see a skew triangle which shows obviously that B>90°.
So sin(A) has to be interpreted as 180 - arcsin() of the acute angle, which gives 125-16-58 (instead of 54-43-02 straight from the calculator).
I have not completed looking into the source of the error of my previous calculations. It may have to do with the interpretation of the atan() values. I will get back to you when it is done.
I apologize for the inconvenience.
Answered by
MathMate
I just took another look. The formula for the law of tangents should have been tan((A+B)/s)/tan((A-B)/2)=(a+b)/(a-b).
Previously I have not divided the angles by 2, hence the error.
I will try to make a corrected version and repost in the original post.
Previously I have not divided the angles by 2, hence the error.
I will try to make a corrected version and repost in the original post.
Answered by
MathMate
The correction to the problem using the tangent rule has been posted at the original post:
http://www.jiskha.com/display.cgi?id=1298609593
Sorry for the inconvenience so caused.
http://www.jiskha.com/display.cgi?id=1298609593
Sorry for the inconvenience so caused.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.