Asked by Amy
                A rectangular box with a square bottom and a volume of 256 cubic feet is to be constructed. The top and bottom cost $ .10 per square foot to make and the four sides cost $ .05 per square foot to make. Find the approximate dimensions of the box which would minimize its cost.
            
            
        Answers
                    Answered by
            Reiny
            
    let each side of the base be x ft
let the height of the box be y ft
V= (x^2)(y) = 256
y = 256/x^2
form the cost equation ....
C = 2(.10)x^2 + 4(.05)xy
= .2x^2 + 2x(256/x^2)
= .2x^2 + 512/x
C' = .4x - 512/x^2 = 0 for min of C
I get x^3 = 1280
x = 10.86 and y = 2.17
check my arithmetic
    
let the height of the box be y ft
V= (x^2)(y) = 256
y = 256/x^2
form the cost equation ....
C = 2(.10)x^2 + 4(.05)xy
= .2x^2 + 2x(256/x^2)
= .2x^2 + 512/x
C' = .4x - 512/x^2 = 0 for min of C
I get x^3 = 1280
x = 10.86 and y = 2.17
check my arithmetic
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.