Asked by Anonymous
Let y represent theta
Prove:
1 + 1/tan^2y = 1/sin^2y
My Answer:
LS:
= 1 + 1/tan^2y
= (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y)
= (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y)
= (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y)
= (sin^2y + cos^2y) + (sin^2y + cos^2y)(sin^2y) / (sin^2y)(cos^2y/sin^2y)
... And now I confuse myself
Where did I go wrong? And please direct me on how to fix it?
Prove:
1 + 1/tan^2y = 1/sin^2y
My Answer:
LS:
= 1 + 1/tan^2y
= (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y)
= (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y)
= (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y)
= (sin^2y + cos^2y) + (sin^2y + cos^2y)(sin^2y) / (sin^2y)(cos^2y/sin^2y)
... And now I confuse myself
Where did I go wrong? And please direct me on how to fix it?
Answers
Answered by
Reiny
you confused me too
I will start again with
LS = 1 + cot^2 y
= 1 + cos^2 y/sin^2 y , now find a common denominator
= (sin^2 y + cos^2 y) / sin^2 y, but sin^2 y + cos^2 y=1
= 1/sin^2 y
= RS
I will start again with
LS = 1 + cot^2 y
= 1 + cos^2 y/sin^2 y , now find a common denominator
= (sin^2 y + cos^2 y) / sin^2 y, but sin^2 y + cos^2 y=1
= 1/sin^2 y
= RS
Answered by
Anonymous
I'm not suppose to use the inverse identities yet ...
Answered by
Reiny
ok, then in
LS = 1 + 1/tan^2y
= 1 + 1/(sin^2 / cos^2 y)
= 1 + (cos^2 y)/(sin^2 y)
= ... my second line
surely you are going to use tanx = sinx/cosx !!!
we are not using "inverse identities" here
LS = 1 + 1/tan^2y
= 1 + 1/(sin^2 / cos^2 y)
= 1 + (cos^2 y)/(sin^2 y)
= ... my second line
surely you are going to use tanx = sinx/cosx !!!
we are not using "inverse identities" here
Answered by
Anonymous
I meant the reciprocals of SOH CAH TOA
And ... I just got it
Here's my answer:
LS:
= 1 + 1/tan^2y
= 1 + 1/(sin^2y/cos^2y)
= 1 + 1(cos^2y/sin^2y)
= 1 + cos^2y / sin^2y
= 1 + 1-sin^2y / sin^2y
= 1(sin^2y) / sin^2y + 1 - sin^2y / sin^2y
= sin^2y + 1 - sin^2y / sin^2y
= 1/sin^2y
And ... I just got it
Here's my answer:
LS:
= 1 + 1/tan^2y
= 1 + 1/(sin^2y/cos^2y)
= 1 + 1(cos^2y/sin^2y)
= 1 + cos^2y / sin^2y
= 1 + 1-sin^2y / sin^2y
= 1(sin^2y) / sin^2y + 1 - sin^2y / sin^2y
= sin^2y + 1 - sin^2y / sin^2y
= 1/sin^2y
Answered by
Reiny
yes
correct
correct
Answered by
Reiny
should have taken a closer look at your solution.
the last few lines make no sense with "no brackets" being used
why don't you follow the steps of my original solution, it is so straightforward.
the last few lines make no sense with "no brackets" being used
why don't you follow the steps of my original solution, it is so straightforward.
Answered by
Janel
cscx-cotx forms an identity with?
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.