Asked by Sarah
Given f(x)=sin(x)-2cos(x) on the interval [0,2pi]. Determine where the function is concave up and concave down.
Answers
Answered by
Reiny
f'(x) = cosx + 2sinx
f''(x) = -sinx + 2cosx
points of inflection"
f''(x) = 0
-sinx + 2cosx = 0
sinx = 2cosx
tanx = 2
x = 63.4 degrees or x = 243.4 degrees
these last two are our important x values, since they are where the curve switches between concave up and concave down
lets's pick values in between
f''(x) = sin0 - 2cos0 = -2, so at 0 it is concave upwards
f''(90) = sin90 - 2cos9- = 1, so at 90 degrees it is concave down
f''(270) = sin270 - 2cos270 = -1 , so at 270 degrees it is concave upwards again.
f''(360) = sin360 - 2cos360 = -2 , sure enough concave upwards
so concave up: from 0 < x < 63.4
concave down : 63.4 < x < 243.4
concave up : 243.4 < x < 360
Just noticed you probably wanted your answer in radians, my calculator was set to degrees.
No big deal, just repeat my calculations with radian settings
f''(x) = -sinx + 2cosx
points of inflection"
f''(x) = 0
-sinx + 2cosx = 0
sinx = 2cosx
tanx = 2
x = 63.4 degrees or x = 243.4 degrees
these last two are our important x values, since they are where the curve switches between concave up and concave down
lets's pick values in between
f''(x) = sin0 - 2cos0 = -2, so at 0 it is concave upwards
f''(90) = sin90 - 2cos9- = 1, so at 90 degrees it is concave down
f''(270) = sin270 - 2cos270 = -1 , so at 270 degrees it is concave upwards again.
f''(360) = sin360 - 2cos360 = -2 , sure enough concave upwards
so concave up: from 0 < x < 63.4
concave down : 63.4 < x < 243.4
concave up : 243.4 < x < 360
Just noticed you probably wanted your answer in radians, my calculator was set to degrees.
No big deal, just repeat my calculations with radian settings
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.