Asked by Phillip
A COLONY OF BACTERIA IS GROWN UNDER IDEAL CONDITIONS IN A LAB SO THAT THE POPULATION INCREASES EXPONENTIALLY WITH TIME. At the end of the three hours, there are 10,000 bacteria. At the end of the 5 hours, there are 40,000 bacteria. How many bacteria were present initially?
I was planning to use Y=P(O)e^kt
but I'm not sure how to set it up.
I was planning to use Y=P(O)e^kt
but I'm not sure how to set it up.
Answers
Answered by
bobpursley
Y(5)=40,000=Pe^5k
y(3)=10,000=Pe^3k
divide one equation by the other
4=e^2k solve for k. Put it back in, and solve for P(O)
There is an easier way. From the data, one can see that population doubles each hour.
Answered by
Damon
Sure, use y = Po e^kt
when t = 3:
10,000 = Po e^3k
ln 10,000 = ln Po + 3k ln e but ln e is 1
so
ln 10,000 = ln Po + 3 k
similarly
ln 40,000 = ln Po + 5 k
subtract
ln 10,000 -ln 40,000 = -2 k
ln (10,000/40,000) = -2k
-1.386 = -2k
k = .693
then back
10,000 = Po e^(2.0794)
Po = 1250
when t = 3:
10,000 = Po e^3k
ln 10,000 = ln Po + 3k ln e but ln e is 1
so
ln 10,000 = ln Po + 3 k
similarly
ln 40,000 = ln Po + 5 k
subtract
ln 10,000 -ln 40,000 = -2 k
ln (10,000/40,000) = -2k
-1.386 = -2k
k = .693
then back
10,000 = Po e^(2.0794)
Po = 1250
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.