Asked by Desire
Assume we draw a simple random sample from a population having a mean of 100 and a standard deviation of 16. What is the probability that a sample mean will be within plus-or-minus two of the population mean for each of the following sample sizes?
n = 50
n=100
n=200
n=400
n = 50
n=100
n=200
n=400
Answers
Answered by
PsyDAG
The probability of being within Z = ±2 for a normal distribution always approximates 95%. However, what you might be seeking is the high and low values that cut off that proportion.
Standard error of the mean (SE) = standard deviation/square root of n
Z = (raw score - mean)/SE
±2 = (raw score - 100)/SE
Use the four SEs to find the raw score (±).
I hope this helps.
Standard error of the mean (SE) = standard deviation/square root of n
Z = (raw score - mean)/SE
±2 = (raw score - 100)/SE
Use the four SEs to find the raw score (±).
I hope this helps.
Answered by
Desire
I don't understand how to get the answer using the formula.
Answered by
Desire
For n = 100:
Lower limit: 100 - 2*16/sqrt(100) = 96.8
Upper limit: 100 + 2*16/sqrt(100) = 103.2
I can't get the answer for the other ones
Lower limit: 100 - 2*16/sqrt(100) = 96.8
Upper limit: 100 + 2*16/sqrt(100) = 103.2
I can't get the answer for the other ones
Answered by
Desire
Can you please help me solve for N
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.