Asked by Joshua
We're doing indefinite integrals using the substitution rule right now in class.
The problem:
(integral of) (e^6x)csc(e^6x)cot(e^6x)dx
I am calling 'u' my substitution variable. I feel like I've tried every possible substitution, but I still haven't found the right one.
The most promising substitution:
u= csc(e^6x)
du/dx=-(e^6x)csc(e^6x)cot(e^6x)
du/((-e^6x)csc(e^6x)cot(e^6x))=dx
so my equation would become
(integral of) usin(e^6x)
Now I don't know what to do, because we haven't learned how to the problem like this. I feel like there must be some substitution that will leave me with only one term to integrate, but I don't think I've found it. Suggestions?
The problem:
(integral of) (e^6x)csc(e^6x)cot(e^6x)dx
I am calling 'u' my substitution variable. I feel like I've tried every possible substitution, but I still haven't found the right one.
The most promising substitution:
u= csc(e^6x)
du/dx=-(e^6x)csc(e^6x)cot(e^6x)
du/((-e^6x)csc(e^6x)cot(e^6x))=dx
so my equation would become
(integral of) usin(e^6x)
Now I don't know what to do, because we haven't learned how to the problem like this. I feel like there must be some substitution that will leave me with only one term to integrate, but I don't think I've found it. Suggestions?
Answers
Answered by
Reiny
you are so close
now let's do some reverse "thinking"
it looks like you know that if
y = cscx, the dy/dx = -cscx cotx
now what about
y = csc(e^6x) ?
wouldn't dy/dx = 6e^(6x)(-csc(e^6x))(cot(e^6x))
= -6e^(6x)(csc(e^6x))(cot(e^6x)) ?
Now compare that with what was given.
the only "extra" is see is the -6 in front, and that is merely a constant, so let's fudge it.
then (integral of) (e^6x)csc(e^6x)cot(e^6x)dx
= -(1/6)csc(e^6x) + C
now let's do some reverse "thinking"
it looks like you know that if
y = cscx, the dy/dx = -cscx cotx
now what about
y = csc(e^6x) ?
wouldn't dy/dx = 6e^(6x)(-csc(e^6x))(cot(e^6x))
= -6e^(6x)(csc(e^6x))(cot(e^6x)) ?
Now compare that with what was given.
the only "extra" is see is the -6 in front, and that is merely a constant, so let's fudge it.
then (integral of) (e^6x)csc(e^6x)cot(e^6x)dx
= -(1/6)csc(e^6x) + C
Answered by
Joshua
I know that your answer is right because it is one of the options on my homework sheet, but I don't think I quite understand how everything cancels out.
If we call csc(e^6x) y from the beginning, upon initial substitution we have:
(integral of) (e^6x)(y)(cot(e^6x))dx
now dy/dx= -6e^(6x)csc(e^6x)cot(e^6x)
However, in our integral equation we have dx, not dy/dx, so we need to rearrange this so that we can directly substitute for dx
which would give us dy/(--6e^(6x)csc(e^6x)cot(e^6x)) = dx.
If you plug that into our integral, we have
-1/6 (integral of) y * 1/csc(e^6x) dy
or -1/6 (integral of) sin(e^6x)y dy
I know this isn't right, so I feel like I don't properly understand what to do with the dy/dx situation.
If we call csc(e^6x) y from the beginning, upon initial substitution we have:
(integral of) (e^6x)(y)(cot(e^6x))dx
now dy/dx= -6e^(6x)csc(e^6x)cot(e^6x)
However, in our integral equation we have dx, not dy/dx, so we need to rearrange this so that we can directly substitute for dx
which would give us dy/(--6e^(6x)csc(e^6x)cot(e^6x)) = dx.
If you plug that into our integral, we have
-1/6 (integral of) y * 1/csc(e^6x) dy
or -1/6 (integral of) sin(e^6x)y dy
I know this isn't right, so I feel like I don't properly understand what to do with the dy/dx situation.
Answered by
Joshua
Never mind, I figured it out; because y= csc(e^6x), the ys cancel out, so we are left with -1/6 (integral of) dy, which gives us -1/6 csc(e^6x) + C. Thank you for the help!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.