Asked by Barida James Asaakpigi
A bucket full of water is in the form of a Frustum of a cone. The bottom and top radii of the Frustum are 18cm and 28cm respectively and the vertical depth is 30cm. Calculate the curved surface area, total surface area and volume of the Frustum
Answers
Answered by
Damon
well, I suspect the curved surface area is 2 pi * (1/2)(18+28) ,the circumference halfway up, times the slant height.
to find slant height
triangle base = 28 - 18 = 10
height = 30 so hypotenuse = sqrt (100+ 900)= 10 sqrt(10)
so area of curved surface = 46 pi * 10sqrt(10)
to get the total add pi (18^2 + 29^2)
to find slant height
triangle base = 28 - 18 = 10
height = 30 so hypotenuse = sqrt (100+ 900)= 10 sqrt(10)
so area of curved surface = 46 pi * 10sqrt(10)
to get the total add pi (18^2 + 29^2)
Answered by
oobleck
The frustrum is the bottom of a cone of height 84. The missing top has height 54.
v = π/3 (28^2*84 - 18^2*54) = 16120π cm^3
v = π/3 (28^2*84 - 18^2*54) = 16120π cm^3
Answered by
Anonymous
40.3
Answered by
Victor
40.3cm
Answered by
Blessing
Please can you solve it in a clearer way
I don't understand how you solved it
I don't understand how you solved it
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.