Asked by lijm
How many days will it take for a sum of $2000 to earn $40 interest if it is deposited in a bank paying simple interest at the rate of 3.6% per year?
What I did:
I=Prt
40=2000(3.6t)
40=7200t
40/7200=7200t/7200
t= .0055555556
What I did:
I=Prt
40=2000(3.6t)
40=7200t
40/7200=7200t/7200
t= .0055555556
Answers
Answered by
Reiny
In general, the formula I=Prt
has I in dollars
P in dollars
r : then annual interest year, expressed as a decimal
t: the time in years.
so:
40 = 2000(.036)t
t = 40/(2000(.036)) = .5555... or 5/9 years
to convert that to days, we have to multiply it by 365
so t = (5/9)(365) or 202.777. or appr 203 days
check:
P = 2000
r = .036
t = 203/365
I = 2000(.036)(203/365) = 40.04 , 4 cents off because we rounded to the nearest day
has I in dollars
P in dollars
r : then annual interest year, expressed as a decimal
t: the time in years.
so:
40 = 2000(.036)t
t = 40/(2000(.036)) = .5555... or 5/9 years
to convert that to days, we have to multiply it by 365
so t = (5/9)(365) or 202.777. or appr 203 days
check:
P = 2000
r = .036
t = 203/365
I = 2000(.036)(203/365) = 40.04 , 4 cents off because we rounded to the nearest day
Answered by
henry2,
I = P*r*T.
40 = 2000*(0.036/365)*T.
40 = 0.1973T,
T = 203 Days.
40 = 2000*(0.036/365)*T.
40 = 0.1973T,
T = 203 Days.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.