Question
a man 1.8 metres, standing under a street light, notices that his shadow is 6.5metres. He walks 12 metres in the direction of 150 degree true bearing and he realises that his shadow is 9.1 metres. How tall is the street light.
Answers
I assume that by "true bearing" you mean directly away from the light. Otherwise, the direction provides no useful information.
Draw the diagram. It will include two sets of similar triangles, each with the light pole as one side. You can see that if the man started x meters from the pole, then
h/(x+6.5) = 1.8/6.5
h/(x+12+9.1) = 1.8/9.1
Solve these to get both the height and the man's initial distance.
Draw the diagram. It will include two sets of similar triangles, each with the light pole as one side. You can see that if the man started x meters from the pole, then
h/(x+6.5) = 1.8/6.5
h/(x+12+9.1) = 1.8/9.1
Solve these to get both the height and the man's initial distance.
Related Questions
Lindsay is out one night and notices that her body casts a shadow that is 1.8m long when she is stan...
A street light is hung 18 ft. above street level. A 6-foot tall man standing directly under the ligh...
a boy is walking at dusk and notices his shado from a nearby street light. the boy is 5 feet tall an...