Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
If f is a function such that [(f(b)-f(a))/(b-a)]=2 , then which of the following statements must be true? a.f(a) = f(b) = 2 b.T...Asked by Karen
If f is a function such that
(f(b) - f(a))/(b-a) =2, then which of the following statements must be true
a) f(a) = f(b) =2
b) the slope of the tangent line to the function at x =a is 2
c) The average rate of change of the function on the interval [a,b] is 2
d) the linear approximation for
f(x) at x =a is y= 2
(f(b) - f(a))/(b-a) =2, then which of the following statements must be true
a) f(a) = f(b) =2
b) the slope of the tangent line to the function at x =a is 2
c) The average rate of change of the function on the interval [a,b] is 2
d) the linear approximation for
f(x) at x =a is y= 2
Answers
Answered by
Steve
looks like (c) to me. That fraction is ∆y/∆x, right?
Answered by
bobpursley
b) would be true if one were dealing with the lim(f) as b >>>a. But that is not true.
c. average is a powerful term. True
.
c. average is a powerful term. True
.
Answered by
LSS Correct Answer
Correct answer is C
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.