Asked by John
I need help with integrating these two problems. Im stuck.
1. integrate (sin^-1)dx/((1-x^2)^3/2)
sin^-1 aka arcsin
2. integrate dx/((1-x^2)^3/2) by using 1/z
Any and all help will be appreciated!
1. integrate (sin^-1)dx/((1-x^2)^3/2)
sin^-1 aka arcsin
2. integrate dx/((1-x^2)^3/2) by using 1/z
Any and all help will be appreciated!
Answers
Answered by
Steve
#1 makes no sense
#2 dx/(1-x^2)^(3/2)
If you let
x = 1/z
dx = -1/z^2 dz
1-x^2 = 1 - 1/z^2 = (z^2-1)/z^2
Now you have
-dz/z^2 z^3/(z^2-1)^(3/2)
= -z dz/(z^2-1)^(3/2)
and the integral is simply
1/√(z^2-1) = x/√(1-x^2)
#2 dx/(1-x^2)^(3/2)
If you let
x = 1/z
dx = -1/z^2 dz
1-x^2 = 1 - 1/z^2 = (z^2-1)/z^2
Now you have
-dz/z^2 z^3/(z^2-1)^(3/2)
= -z dz/(z^2-1)^(3/2)
and the integral is simply
1/√(z^2-1) = x/√(1-x^2)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.