Asked by Lilly
Find all values of c such that
3^(2c+1)=28*(3^c)-9. If you find more than one value of c, then list your values in increaing order, separated by commas.
3^(2c+1)=28*(3^c)-9. If you find more than one value of c, then list your values in increaing order, separated by commas.
Answers
Answered by
Reiny
3^(2c+1)=28*(3^c)-9
3^(2c)*3^1 = 28*3^c - 9
3(3^c)^2 - 28(3^c) + 9 = 0
let 3^c = x
3x^2 - 28x + 9 = 0
(3x - 1)(x - 9) = 0
x = 1/3 or x = 9
if x = 1/3
3^c= 1/3 = 3^-1 -----> c = -1
if x = 9
3^c = 9 = 3^2 ----> c = 2
3^(2c)*3^1 = 28*3^c - 9
3(3^c)^2 - 28(3^c) + 9 = 0
let 3^c = x
3x^2 - 28x + 9 = 0
(3x - 1)(x - 9) = 0
x = 1/3 or x = 9
if x = 1/3
3^c= 1/3 = 3^-1 -----> c = -1
if x = 9
3^c = 9 = 3^2 ----> c = 2
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.