Asked by sam
Consider the function f(t)=2sec^2(t)–6t^2 . Let F(t) be the antiderivative of f(t) with F(0)=0 .
Then F(5)=?
I am confused on how I would find the antiderivative, after I do that do I plug in five?
Then F(5)=?
I am confused on how I would find the antiderivative, after I do that do I plug in five?
Answers
Answered by
drwls
You might want to use a table of integrals for the first term. Most people prefer to call the "antiderivative" the (indefinite) integral.
In your case the integral is
F(t) = 2 tan t -2t^3 + C
where C is an arbitary constant.
Since F(0) = 0, C = 0
Now solve for F(5)
In your case the integral is
F(t) = 2 tan t -2t^3 + C
where C is an arbitary constant.
Since F(0) = 0, C = 0
Now solve for F(5)
Answered by
sam
when i plug this answer in I get -500 is this correct?
Answered by
drwls
I get 2 tan 5 - 2*125 = -249.8
The "5" is understood to be in radians. The -2t^3 term dominates
The "5" is understood to be in radians. The -2t^3 term dominates
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.