What is the least common denominator for 68 and 56 ?

(1 point)
Responses

24
24

36
36

48
48

14
14
Question 2
Jose is baking a cake. The recipe calls for 24
cup of sugar for the cake and 35
cup of sugar for the frosting. How many cups of sugar will he need in all?(1 point)
Responses

2 220
2 220

159
15 ninths

1110
11 tenth
Question 3
True or False: When adding or subtracting fractions, you must always have a common denominator.(1 point)
Responses

True
True

False
False
Question 4
Find the difference: 34 − 26
(1 point)
Responses

512
5 over 12

12
1 half

510
5 tenths

112
1 over 12
Question 5
Find the sum: 46 + 23
(1 point)
Responses

69
6 ninths

23
2 thirds

1 59
1 59

1 13
1 13
Skip to navigation

1 answer

Let's address each question one by one.

Question 1: What is the least common denominator for 68 and 56?

To find the least common denominator (LCD), we need to find the least common multiple (LCM) of 68 and 56.

  • The prime factorization of 68 is \(2^2 \times 17\).
  • The prime factorization of 56 is \(2^3 \times 7\).

To find the LCM, we take the highest power of each prime factor:

  • \(2^3\) (from 56)
  • \(7\) (from 56)
  • \(17\) (from 68)

So, the LCM is \(2^3 \times 7 \times 17 = 8 \times 7 \times 17 = 952\).

Therefore, the least common denominator is 952. However, since this value is not in the provided options, it appears there might be a misunderstanding with the question. The correct LCD for fractions involving 68 and 56 should actually be 56, which can be used for most simple fractions from these numbers.

Question 2: Jose is baking a cake. The recipe calls for \( \frac{2}{4} \) cup of sugar for the cake and \( \frac{3}{5} \) cup of sugar for the frosting. How many cups of sugar will he need in all?

We need a common denominator to add these fractions:

  • The least common denominator for 4 and 5 is 20.
  • \( \frac{2}{4} = \frac{10}{20} \)
  • \( \frac{3}{5} = \frac{12}{20} \)

Now, add them together: \[ \frac{10}{20} + \frac{12}{20} = \frac{22}{20} = 1 \frac{2}{20} = 1 \frac{1}{10} \]

Thus, Jose will need 1 1/10 cups of sugar.

Question 3: True or False: When adding or subtracting fractions, you must always have a common denominator.

The answer is True. You need to have a common denominator to add or subtract fractions.

Question 4: Find the difference: \( \frac{3}{4} - \frac{2}{6} \)

First, find a common denominator. The least common denominator of 4 and 6 is 12.

  • Convert \( \frac{3}{4} \) to \( \frac{9}{12} \)
  • Convert \( \frac{2}{6} \) to \( \frac{4}{12} \)

Now, subtract: \[ \frac{9}{12} - \frac{4}{12} = \frac{5}{12} \]

So the answer is \( \frac{5}{12} \).

Question 5: Find the sum: \( \frac{4}{6} + \frac{2}{3} \)

To add these fractions, convert \( \frac{2}{3} \) to sixths:

  • \( \frac{2}{3} = \frac{4}{6} \)

Now add: \[ \frac{4}{6} + \frac{4}{6} = \frac{8}{6} = \frac{4}{3} = 1 \frac{1}{3} \]

So the answer is \( 1 \frac{1}{3} \).

If you need further clarifications or assistance, feel free to ask!

Similar Questions
  1. subtract: express your answer in simplest form.5x-3/6 - (x+3)/6 answer choices a) 4x-1 b) 2x-3/3 c) 2x/3 -1 d) 2x/3 show me hou
    1. answers icon 1 answer
  2. x/(x-3)-4-(2x-5)/(x+2)If the problem is this: x/(x - 3) - 4 - (3x - 5)/(x + 2) ...find a common denominator to start. The common
    1. answers icon 0 answers
    1. answers icon 1 answer
  3. 26 x 1/5 divided by 1/2 x 5.evaluate. I don't know if i'm supposed to find a common denominator and if i should use 10 as the
    1. answers icon 1 answer
more similar questions