Asked by Lid
using the squeeze theorem, find the limit as x->0 of x*e^[8sin(1/x)]
what i did was:
-1<=sin(1/x)<=1
-8<=8*sin(1/x)<=8
e^(-8)<=e^[8*sin(1/x)]<=e^(8)
x*e^(-8)<=x*e^[8*sin(1/x)]<=x*e^(8)
lim x->0 [x*e^(-8)] = 0
lim x->0 [x*e^(8)] = 0
hence, lim x->0 (x*e^[8*sin(1/x)]) = 0
is my solution right? the answer is correct, i'm just not sure about the procedures
what i did was:
-1<=sin(1/x)<=1
-8<=8*sin(1/x)<=8
e^(-8)<=e^[8*sin(1/x)]<=e^(8)
x*e^(-8)<=x*e^[8*sin(1/x)]<=x*e^(8)
lim x->0 [x*e^(-8)] = 0
lim x->0 [x*e^(8)] = 0
hence, lim x->0 (x*e^[8*sin(1/x)]) = 0
is my solution right? the answer is correct, i'm just not sure about the procedures
Answers
Answered by
Steve
correct
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.