Use the image to answer the question.

A coordinate plane plots temperature in Celsius for different days. The x-axis labeled day, and the y-axis labeled temperature degree Celcius, both range from negative 5 to 5 in increments of 1. Six unlabeled points are plotted. Quadrant 1 is labeled with left parenthesis positive sign comma positive sign right parenthesis. Quadrant 2 is labeled with left parenthesis negative sign comma positive sign right parenthesis. Quadrant 3 is labeled with left parenthesis negative sign comma negative sign right parenthesis. Quadrant 4 is labeled with left parenthesis positive sign comma negative sign right parenthesis. Points are plotted at left parenthesis 2 comma 2 right parenthesis; left parenthesis negative 4 comma 4 right parenthesis, left parenthesis negative 3 comma 0 right parenthesis; left parenthesis negative 2 comma negative 2 right parenthesis; left parenthesis zero comma zero right parenthesis; left parenthesis 4 comma negative 1 right parenthesis.

Alex is tracking temperatures. Today the temperature was 0°
Celsius, which is represented by the point (0, 0)
. If the temperature yesterday was right in between today’s temperature and the temperature two days ago, what was the temperature yesterday?

(1 point)
Yesterday’s temperature was
°
Celsius.
Remaining Attempts : 3

1 answer

To find yesterday's temperature, we first need to identify the temperatures for today and the day before yesterday.

  1. Today's temperature is represented by the point (0, 0), which is 0° Celsius.
  2. We need to determine the temperature two days ago. The temperatures are plotted at the following points:
    • (2, 2) → 2° Celsius
    • (-4, 4) → 4° Celsius
    • (-3, 0) → 0° Celsius
    • (-2, -2) → -2° Celsius
    • (0, 0) → 0° Celsius (today)
    • (4, -1) → -1° Celsius

Now, we assume the temperature two days ago could be from one of the points that's not today. Let's denote today's temperature (0°) as T_today, yesterday's temperature as T_yesterday, and the temperature two days ago as T_two_days_ago.

According to the problem, the temperature yesterday was right in between today’s temperature and the temperature two days ago. Mathematically, this can be expressed as: \[ T_yesterday = \frac{T_today + T_two_days_ago}{2} \]

We know that:

  • T_today = 0°

To find T_two_days_ago, we can test the possible temperatures from the plotted points:

  • If T_two_days_ago = 2° Celsius: \[ T_yesterday = \frac{0 + 2}{2} = 1° \text{ Celsius} \]
  • If T_two_days_ago = 4° Celsius: \[ T_yesterday = \frac{0 + 4}{2} = 2° \text{ Celsius} \]
  • If T_two_days_ago = 0° Celsius: (not valid since it's today)
  • If T_two_days_ago = -2° Celsius: \[ T_yesterday = \frac{0 + (-2)}{2} = -1° \text{ Celsius} \]
  • If T_two_days_ago = -1° Celsius: \[ T_yesterday = \frac{0 + (-1)}{2} = -0.5° \text{ Celsius} \]

Among the calculated values, the valid options for yesterday's temperature based on available points are:

  • 1° Celsius (if yesterday was between 0° and 2°)
  • 2° Celsius (if yesterday was between 0° and 4°)
  • -1° Celsius (if yesterday was between 0° and -2°)

Since we are looking for a straightforward solution that adheres to the typical interpretation of "right in between" discrete values, and limiting the candidates based on the possibilities we have explored:

The best fit considering common temperatures would be that yesterday's temperature was 1° Celsius.

So, the final answer is: Yesterday’s temperature was 1° Celsius.