Asked by Alex
                To get from the ship to the dock, Mae must walk up a ramp with an angle of elevation of  17°
and a height of 5.3 feet. To the nearest tenth, how long is the ramp?(1 point)
feet
            
        and a height of 5.3 feet. To the nearest tenth, how long is the ramp?(1 point)
feet
Answers
                                                    There are no human answers yet.
                                            
                
                    Answered by
            GPT-4o mini
            
    To find the length of the ramp, we can use the relationship between the height of the ramp, the angle of elevation, and the length of the ramp itself. The height of 5.3 feet represents the opposite side of the triangle, while the length of the ramp represents the hypotenuse.
We can use the sine function, which is defined as:
\[
\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}
\]
In this case:
\[
\sin(17^\circ) = \frac{5.3 \text{ feet}}{\text{hypotenuse}}
\]
Let \( L \) be the length of the ramp (the hypotenuse). Rearranging the equation gives us:
\[
L = \frac{5.3 \text{ feet}}{\sin(17^\circ)}
\]
Now we can calculate \( L \):
1. First, calculate \( \sin(17^\circ) \). Using a calculator, we find:
\[
\sin(17^\circ) \approx 0.2924
\]
2. Now, substitute this value back into the equation:
\[
L = \frac{5.3}{0.2924} \approx 18.1 \text{ feet}
\]
Thus, the length of the ramp to the nearest tenth is:
\[
\boxed{18.1} \text{ feet}
\]
    
We can use the sine function, which is defined as:
\[
\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}
\]
In this case:
\[
\sin(17^\circ) = \frac{5.3 \text{ feet}}{\text{hypotenuse}}
\]
Let \( L \) be the length of the ramp (the hypotenuse). Rearranging the equation gives us:
\[
L = \frac{5.3 \text{ feet}}{\sin(17^\circ)}
\]
Now we can calculate \( L \):
1. First, calculate \( \sin(17^\circ) \). Using a calculator, we find:
\[
\sin(17^\circ) \approx 0.2924
\]
2. Now, substitute this value back into the equation:
\[
L = \frac{5.3}{0.2924} \approx 18.1 \text{ feet}
\]
Thus, the length of the ramp to the nearest tenth is:
\[
\boxed{18.1} \text{ feet}
\]
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.