There is a room 10 feet high by 10 feet wide by 10 feet in length. On one wall, there is an electrical outlet 1 foot from the floor and centered five feet from each side of the wall. On the opposite wall, one foot from the ceiling and centered five feet from each side of the wall, is an electrical box. How would you run a wire from the box to the outlet, attached to either the floor, ceiling or walls, that is less than 20 feet in length?

I have tried making a box to represent the room but can not figure out how the wire, running from box to outlet, could be less than 20 feet no matter how I run it.

2 answers

Consider the room. The front wall is square ABCD, and the back wall is EFGH.

The front outlet (P) is a foot from the floor (AB), and the back outlet (Q) is a foot from the ceiling (GH).

A line directly up and across and down is 20 feet. But, you can do the following: Unfold the room and draw a new diagram, with

square ABCD
on its right is the wall BCFG
above that is the ceiling CGDH
to its right is the far wall, GHEF.

Now draw a line PQ. Its length is

√(16^2+10^2) = 18.86
I made your configuration with sheets of paper 10" x 10". I got the 16" leg, but I don't get the 10 foot height. I have the walls/ceiling in position similar to a backwards z. But from one foot over to the right from F, if I go straight up to form one of the legs, I get, up to G (one foot to the right), 9', plus 5' more to reach the box at Q, as it would have to travel half of the width of the wall. 9' + 5' =14', and the hypotenuse where the wire would lay would be slightly more than 21'. What am I looking at wrongly?