Assistance needed.
Please type your subject in the School Subject box. Any other words are likely to delay responses from a teacher who knows that subject well.
The Region "R" under the graph of y = x^3 from x=0 to x=2 is rotated about the y-axis to form a solid.
a. Find the area of R.
b. Find the volume of the solid using vertical slices.
c. Find the first moment of area of R with respect to the y-axis. What do you notice about the integral?
d. Find the x coordinate of the centroid of R.
e. A theorem of Pappus states that the volume of a solid of revolution equals the area of the region being rotated times the distance the centroid of the region travels. Show that this problem confirms this theorem.
I was able to do part "a" as the integral from 0 to 2 of x^3 dx. Also I believe part "b" is pi*[3y^(5/3)/5] evaluated from 0 to 2
2 answers
Subject added