beats me but maybe:
y = b + m x
for any m, y = b when x = 0
then
y = 1 + m x is family of straight lines of different slopes through (0,1)
in this particular case
y = 1 -1 x, slope = -1
The equation x + y = 1 can be viewed as a linear system of one equation in two unknowns. Express a general solution of this equation as a particular solution plus a general solution of the associated homogeneous system.
Then, give a geometric interpretation of the result.
1 answer