The average human heartbeat about 3.5×10 to the seventh power times per year. The current population of Massachusetts is about 7×10 to the six people, but how many heartbeats occurred students per year write the answer in scientific notation.

1 answer

To find the total number of heartbeats in Massachusetts per year, you can multiply the average number of heartbeats per person per year by the population of Massachusetts.

  1. The average number of heartbeats per year: \(3.5 \times 10^7\)
  2. The population of Massachusetts: \(7 \times 10^6\)

Now, multiply these two values together:

\[ (3.5 \times 10^7) \times (7 \times 10^6) \]

To do this, multiply the coefficients (the numbers in front) and then add the exponents:

\[ 3.5 \times 7 = 24.5 \]

For the exponents:

\[ 10^7 \times 10^6 = 10^{(7 + 6)} = 10^{13} \]

Now we combine these results:

\[ 24.5 \times 10^{13} \]

To express \(24.5\) in scientific notation, we rewrite it as \(2.45 \times 10^1\). Therefore, we can combine it with \(10^{13}\):

\[ (2.45 \times 10^1) \times 10^{13} = 2.45 \times 10^{(1 + 13)} = 2.45 \times 10^{14} \]

So, the total number of heartbeats in Massachusetts per year is:

\[ \boxed{2.45 \times 10^{14}} \]