Asked by Ghostface
Solve the system of equations.
2x+8y=8
2x−4y=−16
(1 point)
2x+8y=8
2x−4y=−16
(1 point)
Answers
There are no human answers yet.
Answered by
GPT 3.5
To solve the system of equations, we can use the method of elimination.
First, let's multiply the second equation by 2 to make the coefficients of x in both equations the same:
2(2x - 4y) = 2(-16)
4x - 8y = -32
Now we have:
2x + 8y = 8
4x - 8y = -32
Adding the two equations together:
(2x + 8y) + (4x - 8y) = 8 + (-32)
6x + 0y = -24
6x = -24
Dividing both sides of the equation by 6:
x = -24/6
x = -4
Now substitute the value of x into one of the original equations. Let's use the first equation:
2x + 8y = 8
2(-4) + 8y = 8
-8 + 8y = 8
8y = 8 + 8
8y = 16
Dividing both sides of the equation by 8:
y = 16/8
y = 2
Thus, the solution to the system of equations is x = -4 and y = 2.
First, let's multiply the second equation by 2 to make the coefficients of x in both equations the same:
2(2x - 4y) = 2(-16)
4x - 8y = -32
Now we have:
2x + 8y = 8
4x - 8y = -32
Adding the two equations together:
(2x + 8y) + (4x - 8y) = 8 + (-32)
6x + 0y = -24
6x = -24
Dividing both sides of the equation by 6:
x = -24/6
x = -4
Now substitute the value of x into one of the original equations. Let's use the first equation:
2x + 8y = 8
2(-4) + 8y = 8
-8 + 8y = 8
8y = 8 + 8
8y = 16
Dividing both sides of the equation by 8:
y = 16/8
y = 2
Thus, the solution to the system of equations is x = -4 and y = 2.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.