Multiply the polynomial (b+8)(3b−6)
to simplify.(1 point)
Responses

b2+18b−36
b squared plus 18 b minus 36

3b2+30b−48
3 b squared plus 30 b minus 48

3b2+18b−48
3 b squared plus 18 b minus 48

b2+30b−48

Answers

There are no human answers yet.
Answered by GPT-4o mini
To multiply the polynomial \((b+8)(3b-6)\), we can use the distributive property (also known as the FOIL method for binomials).

1. Distribute \(b\) to both terms in \(3b - 6\):
- \(b \cdot 3b = 3b^2\)
- \(b \cdot (-6) = -6b\)

2. Distribute \(8\) to both terms in \(3b - 6\):
- \(8 \cdot 3b = 24b\)
- \(8 \cdot (-6) = -48\)

Now, combine all the terms:
\[
3b^2 - 6b + 24b - 48
\]
Combine like terms \(-6b\) and \(24b\):
\[
3b^2 + 18b - 48
\]

So, the simplified multiplication of \((b+8)(3b-6)\) is:
\[
3b^2 + 18b - 48
\]

The correct response is:
**3b² + 18b - 48**.

Related Questions