In the proof that ab+cd

, where a, b, c, and d are integers and b and d are non-zero, explain why ad+bcbd
 is a rational number.(1 point)
Responses

By the Closure Property, ad+bc
 and bd
 are both integers, and so ad+bcbd
 is a quotient of two integers.
By the Closure Property, A d plus b c and b d are both integers, and so    the fraction with numerator A d plus b c and denominator b d is a quotient of two integers.

By the Closure Property, ad+bc
 and bd
 are both quotients of integers, and so ad+bcbd
 is a quotient of two integers.
By the Closure Property,    A d plus b c and b d are both quotients of integers, and so    the fraction with numerator A d plus b c and denominator b d is a quotient of two integers.

By the Closure Property, ad+bcbd
reduces to a whole number, which is a subset of rational numbers.
By the Closure Property, the fraction with numerator A d plus b c and denominator b d reduces to a whole number, which is a subset of rational numbers.

By the Closure Property, a quotient of imaginary numbers is a rational number.

1 answer

The correct response to explain why \( \frac{ad + bc}{bd} \) is a rational number is:

By the Closure Property, \( ad + bc \) and \( bd \) are both integers, and so \( \frac{ad + bc}{bd} \) is a quotient of two integers.

This is valid because:

  • \( a, b, c, \) and \( d \) are all integers, and since the product and sum of integers are also integers, both \( ad \) and \( bc \) are integers.
  • Since \( b \) and \( d \) are non-zero, \( bd \) is also a non-zero integer.
  • Therefore, \( \frac{ad + bc}{bd} \) is a quotient of integers where the denominator is not zero, confirming that it is a rational number.
Similar Questions
    1. answers icon 3 answers
    1. answers icon 3 answers
  1. In the proof that ab+cd, where a, b, c, and d are integers and b and d are non-zero, explain why ad+bcbd is a rational number.(1
    1. answers icon 1 answer
  2. In the proof that ab+cd, where a, b, c, and d are integers and b and d are non-zero, explain why ad+bcbd is a rational number.(1
    1. answers icon 1 answer
more similar questions