(7.5 - 2cosØ)^2 = √(25 - 4sinØ)^2
(7.5 - 2cosØ)^2 = 25 - 4sinØ
look at the left side
it is always positive. The smallest value of
7.5 - 2cosØ is 4.5, when cosØ = 1
so the minimum value of the left side
is 5.5^2 or 30.25
Now look at the right side.
4sinØ varies between -4 and 4
so the maximum we can obtain is 29 and the minimum is 21
I had Wolfram graph
y = (7.5 - 2cosØ)^2 and y = 25-4sinØ
you can see that the curves never meet
http://www.wolframalpha.com/input/?i=plot+y+%3D+(7.5+-+2cosx)%5E2,+y+%3D+%E2%88%9A(25+-+4sinx)%5E2
There is no solution.
How do you solve for (7.5-2cosθ)^2=√{25-4sinθ}^2
1 answer