Asked by xavier
                Find the equation of a circle passing through (3,7) and tangent to the lines x-3y+8=0 and y=3x.
Please help me
            
        Please help me
Answers
                    Answered by
            Reiny
            
    let the centre be C(a,b)
then the distance from C to x-3y+8 = 0 is
|a - 3b+8|/√10
then the distance from C to 3x-y=0 is
|3a - b|/√10
so 3a-b = a-3b + 8 or 3a-b = -a + 3b - 8
2a + 2b = 8 or 4a - 4b = -8
a + b = 4 or or a - b = -2
let's use a-b=-2 or b = a+2 , more reasonable from my sketch
also radius = √(a-3)^2 + (b-7)^2
so
(3a-b)/√10 = √(a-3)^2 + (b-7)^2
square both sides:
(3a - b)^2 /10 = (a-3)^2 + (b-7)^2
but b = a+2
((3a - a-2)^2) /10 = (a-3)^2 + (a-5)^2
4a^2 - 8a + 4 = 10(a^2 - 6a + 9 + a^2 - 10a + 25)
4a^2 - 8a + 4 = 20a^2 - 160a + 340
16a^2 - 152a + 336 = 0
2a^2 - 19a + 42 = 0
(a-6)(2a-7) = 0
a = 6 or a = 7/2
b = 8 or b = 11/2
so we have to possible centres (6,8) and (3.5 , 5.5)
each one must be below y = 3x and above x-3y+8=0
or y < 3x and y > (x+8)/3
(a quick arithmetic check shows both are possible)
I will use the (6,8)
so a possible equation is
(x-6)^2 + (y-8)^2 = r^2
but (3,7) lies on it, so
(-3)^2 + (-1)^2 = r^2 = 10
(x-6)^2 + (y-8)^2 = 10 is such a circle.
    
then the distance from C to x-3y+8 = 0 is
|a - 3b+8|/√10
then the distance from C to 3x-y=0 is
|3a - b|/√10
so 3a-b = a-3b + 8 or 3a-b = -a + 3b - 8
2a + 2b = 8 or 4a - 4b = -8
a + b = 4 or or a - b = -2
let's use a-b=-2 or b = a+2 , more reasonable from my sketch
also radius = √(a-3)^2 + (b-7)^2
so
(3a-b)/√10 = √(a-3)^2 + (b-7)^2
square both sides:
(3a - b)^2 /10 = (a-3)^2 + (b-7)^2
but b = a+2
((3a - a-2)^2) /10 = (a-3)^2 + (a-5)^2
4a^2 - 8a + 4 = 10(a^2 - 6a + 9 + a^2 - 10a + 25)
4a^2 - 8a + 4 = 20a^2 - 160a + 340
16a^2 - 152a + 336 = 0
2a^2 - 19a + 42 = 0
(a-6)(2a-7) = 0
a = 6 or a = 7/2
b = 8 or b = 11/2
so we have to possible centres (6,8) and (3.5 , 5.5)
each one must be below y = 3x and above x-3y+8=0
or y < 3x and y > (x+8)/3
(a quick arithmetic check shows both are possible)
I will use the (6,8)
so a possible equation is
(x-6)^2 + (y-8)^2 = r^2
but (3,7) lies on it, so
(-3)^2 + (-1)^2 = r^2 = 10
(x-6)^2 + (y-8)^2 = 10 is such a circle.
                    Answered by
            xavier
            
    thank you very much! 
    
                    Answered by
            Steve
            
    the two lines intersect at (1,3)
the two lines have slope 1/3 and 3.
So, the center of the circle lies on the line y=x+2. (why?)
the distance from (h,k) to ax+by+c=0 is
|ah+bk+c|/√(a^2+b^2), so if our circle has center (h,k), its radius is
|h-3k+8|/√10 or |3h-k|/√10
Since k=h+2,
|h-3h-6+8| = |-2h+2|
|3h-(h+2)| = |2h-2|
so the distance to the two lines is the same. (whew)
So, our circle is
(x-h)^2 + (y-(h+2))^2 = (2h-2)^2/10
Now, we know that (3,7) is on the circle, so
(3-h)^2 + (7-h-2)^2 = 4(h-2)^2/10
5(3-h)^2 + 5(5-h)^2 = 2(h-2)^2
45-30h+5h^2 + 125-50h+5h^2 = 2h^2-8h+8
8h^2 - 72h + 162 = 0
4h^2 - 36h + 81 = 0
(2h-9)^2 = 0
h = 9/2
So, the circle is
(x-9/2)^2 + (y-(9/2+2))^2 = (18/2-2)^2/10
(x-9/2)^2 + (y-13/2)^2 = 49/10
    
the two lines have slope 1/3 and 3.
So, the center of the circle lies on the line y=x+2. (why?)
the distance from (h,k) to ax+by+c=0 is
|ah+bk+c|/√(a^2+b^2), so if our circle has center (h,k), its radius is
|h-3k+8|/√10 or |3h-k|/√10
Since k=h+2,
|h-3h-6+8| = |-2h+2|
|3h-(h+2)| = |2h-2|
so the distance to the two lines is the same. (whew)
So, our circle is
(x-h)^2 + (y-(h+2))^2 = (2h-2)^2/10
Now, we know that (3,7) is on the circle, so
(3-h)^2 + (7-h-2)^2 = 4(h-2)^2/10
5(3-h)^2 + 5(5-h)^2 = 2(h-2)^2
45-30h+5h^2 + 125-50h+5h^2 = 2h^2-8h+8
8h^2 - 72h + 162 = 0
4h^2 - 36h + 81 = 0
(2h-9)^2 = 0
h = 9/2
So, the circle is
(x-9/2)^2 + (y-(9/2+2))^2 = (18/2-2)^2/10
(x-9/2)^2 + (y-13/2)^2 = 49/10
                    Answered by
            Steve
            
    Reiny and I took basically the same approach, but we arrived at different circles.
Both are correct, but the point (3,7) lies on opposite sides of the radius to the tangent.
Cool!
    
Both are correct, but the point (3,7) lies on opposite sides of the radius to the tangent.
Cool!
                    Answered by
            Lea
            
    Are you all using directed distance?
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.